RECOGNISING ACHIEVEMENT

ADVANCED GCE

Additional materials (enclosed): None

Additional materials (required):

Answer Booklet (8 pages)
List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1 For the mutually exclusive events A and $B, \mathrm{P}(A)=\mathrm{P}(B)=x$, where $x \neq 0$.
(i) Show that $x \leqslant \frac{1}{2}$.
(ii) Show that A and B are not independent.

The event C is independent of A and also independent of B, and $\mathrm{P}(C)=2 x$.
(iii) Show that $\mathrm{P}(A \cup B \cup C)=4 x(1-x)$.

2 Part of Helen's psychology dissertation involved the reaction times to a certain stimulus. She measured the reaction times of 30 randomly selected students, in seconds correct to 2 decimal places. The results are shown in the following stem-and-leaf diagram.

14	1	2							
15	2	4							
16	0	3	6						
17	1	5	7						
18	3	4	5	7	9				
19	2	4	6	7	8	9			
20	0	1	3	4	5	7	8	9	
21	7								

Key: 18 | 3 means 1.83 seconds

Helen wishes to test whether the population median time exceeds 1.80 seconds.
(i) Give a reason why the Wilcoxon signed-rank test should not be used.
(ii) Carry out a suitable non-parametric test at the 5% significance level.

3 From the records of Mulcaster United Football Club the following distribution was suggested as probability model for future matches. X and Y denoted the numbers of goals scored by the home team and the away team respectively.

	X			
	0	1	2	3
0	0.11	0.04	0.06	0.08
1	0.08	0.05	0.12	0.05
2	0.05	0.08	0.07	0.03
3	0.03	0.06	0.07	0.02

Use the model to find
(i) $\mathrm{E}(X)$,
(ii) the probability that the away team wins a randomly chosen match,
(iii) the probability that the away team wins a randomly chosen match, given that the home team scores.

One of the directors, an amateur statistician, finds that $\operatorname{Cov}(X, Y)=0.007$. He states that, as this value is very close to zero, X and Y may be considered to be independent.
(iv) Comment on the director's statement.

4 William takes a bus regularly on the same journey, sometimes in the morning and sometimes in the afternoon. He wishes to compare morning and afternoon journey times. He records the journey times on 7 randomly chosen mornings and 8 randomly chosen afternoons. The results, each correct to the nearest minute, are as follows, where M denotes a morning time and A denotes an afternoon time.

M	A	A	M	M	M	M	M	M	A	A	A	A	A	A
19	20	22	24	25	26	28	30	31	33	35	37	38	39	42

William wishes to test for a difference between the average times of morning and afternoon journeys.
(i) Given that $s_{M}^{2}=16.5$ and $s_{A}^{2}=64.5$, with the usual notation, explain why a t-test is not appropriate in this case.
(ii) William chooses a non-parametric test at the 5% significance level. Carry out the test, stating the rejection region.

5 The discrete random variable X has moment generating function $\frac{1}{4} \mathrm{e}^{2 t}+a \mathrm{e}^{3 t}+b \mathrm{e}^{4 t}$, where a and b are constants. It is given that $\mathrm{E}(X)=3 \frac{3}{8}$.
(i) Show that $a=\frac{1}{8}$, and find the value of b.
(ii) Find $\operatorname{Var}(X)$.
(iii) State the possible values of X.

6 The continuous random variable Y has cumulative distribution function given by

$$
\mathrm{F}(y)= \begin{cases}0 & y<a \\ 1-\frac{a^{3}}{y^{3}} & y \geqslant a\end{cases}
$$

where a is a positive constant. A random sample of 3 observations, Y_{1}, Y_{2}, Y_{3}, is taken, and the smallest is denoted by S.
(i) Show that $\mathrm{P}(S>s)=\left(\frac{a}{s}\right)^{9}$ and hence obtain the probability density function of S.
(ii) Show that S is not an unbiased estimator of a, and construct an unbiased estimator, T_{1}, based on S.

It is given that T_{2}, where $T_{2}=\frac{2}{9}\left(Y_{1}+Y_{2}+Y_{3}\right)$, is another unbiased estimator of a.
(iii) Given that $\operatorname{Var}(Y)=\frac{3}{4} a^{2}$ and $\operatorname{Var}(S)=\frac{9}{448} a^{2}$, determine which of T_{1} and T_{2} is the more efficient estimator.
(iv) The values of Y for a particular sample are $12.8,4.5$ and 7.0. Find the values of T_{1} and T_{2} for this sample, and give a reason, unrelated to efficiency, why T_{1} gives a better estimate of a than T_{2} in this case.

7 The probability generating function of the random variable X is given by

$$
\mathrm{G}(t)=\frac{1+a t}{4-t}
$$

where a is a constant.
(i) Find the value of a.
(ii) Find $\mathrm{P}(X=3)$.

The sum of 3 independent observations of X is denoted by Y. The probability generating function of Y is denoted by $\mathrm{H}(t)$.
(iii) Use $\mathrm{H}(t)$ to find $\mathrm{E}(Y)$.
(iv) By considering $\mathrm{H}(-1)+\mathrm{H}(1)$, show that $\mathrm{P}(Y$ is an even number $)=\frac{62}{125}$.

